文章编号: 0253-2239(2008)11-2057-05

介质/金属结构太赫兹空芯光纤的传输特性

汤晓黎 石艺尉

(复旦大学通信科学与工程系,上海 200433)

摘要 理论分析了金属、介质/金属结构空芯光纤在 THz 波段的模式结构和传输特性。金属空芯光纤支持 TE₁₁模 式,介质/金属空芯光纤的介质膜厚在取最优值时支持 HE₁₁模式。对于波长为 200 μm 的太赫兹波,内径为 1 mm 的两种空芯光纤,TE₁₁和 HE₁₁模式的损耗分别为 8.4 dB/m 和 2 dB/m。为优化介质/金属结构空芯光纤的传输性 能,分析了金属和介质材料的光学常数对衰减系数的影响。基于几种已发表的金属在太赫兹波段的光学常数,计 算结果表明铝是最好的选择;初步测量结果显示,在各种树脂材料中聚乙烯在 THz 波段吸收较小,并且其折射率 接近介质膜的最优值 1.41,为太赫兹波空芯光纤中介质膜材料的理想选择。

关键词 光波导;太赫兹空芯光纤;模式结构;传输特性

中图分类号 TN252 文献标识码 A doi: 10.3788/AOS20082811.2057

Transmission Characteristics of Dielectric-Coated Metal Hollow Fiber for Terahertz Wave

Tang Xiaoli Shi Yiwei

(Department of Communication Science and Engineering, Fudan University, Shanghai 200433, China)

Abstract Transmission characteristics and mode structure of both metal hollow fiber and dielectric-coated metal hollow fiber for terahertz wave are studied. Theoretical evaluation shows that the TE_{11} mode is dominant in metal hollow fiber and has high coupling efficiency when a linearly polarized light source is launched. HE_{11} mode is mainly supported in dielectric-coated metal hollow fiber with an optimum thickness for the dielectric film. The transmission loss of the TE_{11} and HE_{11} mode is 8.4 dB/m and 2 dB/m respectively at the wavelength of 200 μ m for the hollow fibers with 1 mm bore size. The effects of optical constants of metals and dielectric-coated metal hollow fiber. Aluminum is the best choice among the commonly-used metals based on published optical constants. The optimum value for the refractive index of the dielectric film is 1.41. According to the primary measuring results, polyethylene is a proper choice as its refractive index is 1.51 and it brings low absorption in terahertz waves.

Key words optical waveguide; terahertz hollow fiber; mode structure; transmission characteristic

1 引 言

太赫兹(Terahertz, THz)通常是指频率在 0.1~10 THz范围内的电磁波^[1],其波段位于电磁 波谱中的微波和红外之间。THz 辐射在很多领域, 如传感、成像、光谱学和医学都有应用的潜力^[2,3]。 对于 THz 波导的研究尚处于实验室研究阶段。空 芯光纤,作为 THz 波导的一种,具有结构简单、无端 口损耗等优点,在传输激光时将激光束缚在光纤内, 具有很好的安全性。目前,文献报道的 THz 空芯光 纤可分为四类:1)金属管空芯光纤^[4,5],该结构空芯 光纤由于金属管内壁粗糙,传输损耗大,一般用来短 距离传输 THz 波(厘米级);2)介质管空芯光纤^[6], 虽然相比前一种空芯光纤,该结构空芯光纤损耗小, 柔韧性好,但是弯曲造成的附加损耗较大;3)介质基 管内镀金属膜的空芯光纤,我们称之为金属空芯光 纤。当金属膜厚大于趋肤深度时,这种结构的空芯 光纤在传输原理上和第一种是相同的。但是由于金 属膜表面比金属管内壁光滑,金属空芯光纤的传输

基金项目:浦江人才计划(07PJ14012)资助课题。

收稿日期: 2008-01-10; 收到修改稿日期: 2008-05-22

作者简介:汤晓黎(1981-),女,博士研究生,主要从事太赫兹光波导等方面的研究。E-mail: tangxiaoli@fudan.ac.cn 导师简介:石艺尉(1963-),男,教授,博士生导师,主要从事光波导等方面的研究。E-mail: ywshi@fudan.edu.cn

光

损耗比第一种空芯光纤要小。由于采用了介质材料 作为基管,该结构空芯光纤的柔韧性也比较好。金 属空芯光纤在 THz 波段支持 TEn 模的传输。金属 空芯光纤^[7,8]的研究成果表明,内径3mm的镀铜空 芯光纤在波长 158.31 µm 处损耗为 3.9 dB/m。内 径1 mm 的镀银空芯光纤,在190~250 µm 波段损 耗为 7.5~8.0 dB/m。实验测得,当光纤以 15 cm 为半径弯曲 90°时,弯曲造成的附加损耗小于 0.5 dB;4)介质基管内镀介质膜和金属膜的空芯光 纤,我们称之为介质/金属空芯光纤,这是本文的研 究重点。介质膜增加了金属表面的反射率,从而大 大降低了光纤的传输损耗。文献[9]报道了镀银聚 苯乙烯空芯光纤,当聚苯乙烯(Polystyrene, PE)膜 厚取最优值时,该光纤支持 HEn模的传输。实验测 得内径 2 mm,长度 90 cm 的镀银聚苯乙烯空芯光 纤在 119 μm 处的损耗为 0.95 dB/m。

本文首先从理论上分析了金属、介质/金属空芯 光纤在 THz 波段的模式结构和传输特性,说明介 质/金属空芯光纤的传输损耗小于同尺寸的金属空 芯光纤。接着分析了采用不同金属和介质材料对介 质/金属空芯光纤损耗的影响,得到了金属和介质材 料的选择标准。最后,用 THz 电磁波参变振荡器 (THz-wave parametric oscillator, TPO)测量了几 种介质在波长 200 μm 处的吸收情况。

2 阻抗关系和模式结构

理论分析表明,空芯光纤的归一化表面阻抗和 空气的归一化阻抗在不同的情况下支持不同的模 式,表1总结了三种阻抗、导纳关系下的空芯光纤模 式结构^[10]。

Table 1 Surface impedance cases and mode structure of holow fiber

	Surface impe	Mode				
Case1	$ Z_{\text{TE}} \ll Z_0$,	$\mid Y_{\mathrm{TM}} \mid \ll Y_{\mathrm{0}}$	$TE_{\rm 0q}$,	$HE_{\mbox{\tiny pq}}$,	$EH_{\mbox{\tiny pq}}$,	$TM_{\rm 0q}$
Case2	$ Z_{ ext{TE}} \ll Z_0$,	$\mid Y_{ ext{TM}} \mid \gg Y_{ ext{0}}$	TE_{0q} ,	TE_{pq} ,	TM_{pq} ,	$TM_{\rm 0q}$
Case3	$ Z_{ ext{TE}} \gg Z_0$,	\mid $Y_{\mathrm{TM}}\mid$ \ll Y_{0}	TE_{0q} ,	TE_{pq} ,	TM_{pq} ,	$TM_{\rm 0q}$

表中 Z_{TE}、Y_{TM}分别为空芯光纤的表面归一化阻抗、导纳,Z₀、Y₀分别为空气的归一化阻抗、导纳:

$$Z_{0} = Y_{0} = \frac{n_{0}k_{0}T}{\mu_{0}}, \qquad (1)$$

式中 n_0 为空气折射率, k_0 为电磁波在空气中的波数, T为空芯光纤内半径。当 $|Z_{TE}| \ll Z_0$ 时, μ_0 的值为 Bessel函数J₁(x)的第一个零点;否则, μ_0 为Bessel函 数 $J_0(x)$ 的第一个零点。

报

3 空芯光纤的传输特性

3.1 金属空芯光纤

对于金属空芯光纤

$$Z_{\text{TE}} = \frac{1}{\sqrt{v^2 - 1}}, \quad Y_{\text{TM}} = \frac{v^2}{\sqrt{v^2 - 1}},$$
 (2)

其中v=n-jk,为金属的折射率。图 1 为内径 1 mm 镀金空芯光纤的阻抗特性。从图 1 可以看出,在 $\lambda <$ 10 μ m 红外波段,镀金空芯光纤阻抗关系满足 Case1。 在 THz 波段,阻抗关系满足 Case2。因为对于一般的 金属,在 THz 波段 n 和 k 的数量级都为 10³,满足 $|v| \gg 1$,那么 $Z_{TE} \simeq (n-jk)^{-1} \cdot Y_{TM} \simeq n-jk$,而对于内 径 1 mm 的空芯光纤, $Z_0 \cdot Y_0$ 的数量级为 10⁰。由表 1 可知,阻抗关系满足 Case2 的空芯光纤支持 TE 模和 TM 模。

图 1 内径 1 mm 镀金空芯光纤阻抗特性

Fig. 1 Normalized impedance and admittance of Au-coated hollow fiber with 1 mm bore size

图 2 计算了内径 1 mm 的镀金空芯光纤中几个 低阶模的损耗。图 2 中 TE₀₁模虽然损耗最低,但是 它与线性偏振的光源耦合效率很低,而且在柱形波

图 2 内径 1 mm 镀金空芯光纤在 THz 波段的传输特性 Fig. 2 Transmission characteristics of Au-coated hollow fiber in terahertz wave region with 1 mm bore size

导中的场分布为圆环形,不稳定。TE₁₁模有稳定的 场分布,而且与线性偏振的光源有较大的耦合效率。 因此,在THz波段金属空芯光纤主要支持TE₁₁模 的传输。

3.2 介质/金属空芯光纤

当金属膜厚大于趋肤深度时,由于趋肤效应,金属膜厚度不影响空芯光纤的表面阻抗。而不同的介质膜厚则对应不同的表面阻抗。图 3 是镀金聚乙烯 (PE/Au)空芯光纤阻抗特性和聚乙烯膜厚的关系 曲线。取 λ =200 μ m,T=0.5 mm,PE 的折射率为 1.51。由图 3 可见,当介质膜厚变化时,介质/金属 空芯光纤阻抗关系在 Case1、Case2、Case3 之间转换。图中膜厚小于 60 μ m 部分用虚线划出三块区域,从左到右依次对应 Case2、Case1、Case3。其中 Case1 对应的膜厚范围最宽,这使得制作中在满足 Case1 的同时,膜厚可以有一个较大的变化空间。

图 4 为镀金聚乙烯空芯光纤的损耗和介质膜厚 的关系曲线。取 λ =200 μ m, T=0.5 mm。图 4 中标 注 TE₁₁ (Case2)表示阻抗关系满足 Case2 时 TE₁₁模的

图 4 镀金聚乙烯空芯光纤中损耗和介质膜厚的关系 Fig. 4 Theoretical attenuations of PE/Au hollow fiber as a function of PE thickness

损耗。可见,HE₁₁模的损耗最低,图 4 中 HE₁₁模的最 低损耗为 2 dB/m,相应的介质膜厚为 27.2 μm 和 62.2 μm,均落在图 3 Case1 的区域中。HE₁₁模具有 稳定的场分布,不易转化为其他模式,而且对线性偏 振的光源具有较高的耦合效率^[11]。因此在设定介 质膜厚时,应使光纤阻抗满足 Case1。

介质膜厚的设定对于介质/金属空芯光纤非常 重要。最优膜厚定义为传输损耗最小值所对应的介 质膜厚度,记为 d_{opt}:

$$d_{\rm opt} = \frac{\lambda}{2\pi (a^2 - 1)^{1/2}} \left\{ \arctan\left[\frac{a}{(a^2 - 1)^{1/4}}\right] + s\pi \right\},\$$

$$s = 0, 1\cdots, \qquad (3)$$

式中 a 为介质膜折射率。由(3)式,介质/金属空芯 光纤有多个最优膜厚值,如图 4 中,PE/Au 空芯光 纤在 27.2 μ m 处和 62.2 μ m 都取到损耗最小值,但 在实际制作中,还应该考虑介质膜表面粗糙度带来 的传输损耗。一般来说,介质膜越厚,介质膜表面粗 糙度也越大,因此一般取(3)式中 s=0 对应的最优 膜厚值。当 s=0,最优膜厚和波长成正比。与红外 波段相比,最优膜厚从纳米级变为微米级,镀膜工艺 相应地发生很大变化。当 $d=d_{opt}$,HE₁₁模的衰减常 数为

$$\alpha = \frac{1}{2} \left(\frac{u}{2\pi} \right)^2 \frac{\lambda^2}{T^3} \frac{n}{n^2 + k^2} \left[1 + \frac{a^2}{(a^2 - 1)^{\frac{1}{2}}} \right]^2, (4)$$

由(4)式,HE₁₁模的衰减常数和 λ^2 成正比,和 T^3 成反比。

在 THz 波段,金属空芯光纤的主模为 TE₁₁,介 质/金属空芯光纤的主模为 HE₁₁。图 5 比较了同尺 寸镀金空芯光纤和镀金聚乙烯空芯光纤的损耗。 PE/Au 空芯光纤的介质膜厚取最优值。可见介质 膜能有效降低空芯光纤的传输损耗。

Fig. 5 Attenuation properties of gilded hollow fiber and $\rm PE/Au$ hollow fiber

4 材料选择

由(4)式,金属膜材料对 HE11衰减常数的影响 表现为 $n/(n^2+k^2)$ 。图 6 为几种常用金属 $n/(n^2+k^2)$ k^2)值^[12,13]关于波长的变化曲线。图 6 中 Al 是金属 膜材料的最优选择,其次 Au 也是较优的选择。对 于太赫兹空芯光纤的金属膜材料选择,建议采用 Ag。因为 Ag 在红外波段和 Au 的折射率近似相 等。尽管 Ag 在 THz 波段的折射率尚未有完整的 数据报道,但Ag与Au在THz波段的折射率近似 相等的假设已得到初步实验结果的证实[8]。相比于 镀金和镀铝,镀银工艺成熟、制作成本低,容易获得 表面粗糙度小的金属薄膜。介质膜材料对 HEn模 衰减常数的影响表现为 $\left[1+\frac{a^2}{(a^2-1)^{\frac{1}{2}}}\right]^2$ 。图 7 为 HE11模损耗和介质折射率 a 的关系曲线。图 7 中 标注了几种介质对应的折射率。由图 7,HE11模的 损耗在 a = 1.41 处取到最小值。PE 的折射率为 1.51, PTFE的折射率为1.3, 两者都接近最优值。

of the refractive index 由于介质折射率 a 的虚部远远小于实部,假设

介质折射率 a 为实数,即介质对 THz 波没有吸收。 介质的吸收会增加空芯光纤的传输损耗。因此在实 际制作中,还应考虑介质对 THz 波的吸收。我们用 THz 电磁波参变振荡器(TPO)测量了几种介质对 THz 波的吸收。该 TPO 用脉冲激光照射放置于单 谐振腔中的非线性光学晶体产生 THz 电磁波。抽 运光源为波长 1064 nm 的 Nd: YAG Q 开关激光 器;非线性光学晶体采用 MgO: LiNbO3。产生的 THz 波波长范围为 150~280 µm。图 8 给出了聚 四氟乙烯 (Polytetrafluoroethylene, PTFE)、聚乙 烯、环状丙烯树脂(Cyclic olefin polymer, COP)和聚 碳酸酯(Polycarbonate, PC)四种介质在波长 200 um 处的吸收情况。其他材料如聚氯乙烯 (Polyvinyl chloride)、聚酯(Polyester)等,因吸收过 大,没有列出。由于透过率包含了材料对光的反射 造成的损耗,它与材料折射率大小相关。因此透过 率随膜厚变化越明显,表示该材料对 200 µm 波吸 收越大。由于测量中采用了不同厂家生产的 PE 膜,其表面粗糙度有较大差异。图 8 中 1.5 mm 厚 的 PE 膜对应的透过率反而大于 1 mm 厚的 PE 膜。 但由该曲线可以肯定的是,PE的薄膜和厚膜在 200 μm 处透过率的变化较小。可以初步认为,在这四 种常见介质材料,PE的吸收最小,是制作介质/金属 太赫兹空芯光纤的理想介质材料之一。

5 结 论

由本文的分析可知,在金属膜上镀介质膜,可以 明显改善空芯光纤传输特性。理论计算得到内径 1 mm介质/金属空芯光纤在波长 200 μm 的传输损 耗比同尺寸金属空芯光纤降低了约 6 dB/m。在金 属材料方面,由于银 n/(n²+k²)值较小,而且镀银工 艺成熟简便,选择银作为金属材料。对于介质材料, 不但要考虑折射率,还要考虑吸收系数。聚乙烯折射 率接近最优值1.4,而且 TPO 的测量结果表明聚乙烯 在 THz 波段吸收较小,是介质材料的理想选择。

致谢 感谢日本东北大学电气通信系 Yuji Matsuura 先生在样品的 TPO 测试中的大力协助。

参考文献

1 Zhang Xianbin, T. Ikari, H. Ito *et al.*. Analysis of THz electromagnetic wave output character based on high performance 85 mm short cavity optical parametric oscillator[J]. *Acta Optica Sinica*, 2006, **26**(4): 616~620

张显斌,碇智文,依藤弘昌等.高性能85 mm 短腔光学参变振荡器的 THz 电磁波输出特性分析[J].光学学报,2006,26(4):616~620

2 Sun Bo, Yao Jianquan. Generation of terahertz wave based on optical methods [J]. Chin. J. Lasers, 2006, 33 (10): 1349 ~ 1359

孙 博,姚建铨. 基于光学方法的太赫兹辐射源[J]. 中国激光, 2006, **33**(10): 1349~1359

- 3 Jun Yang, Shuangchen Ruan, Min Zhang. Real-time, continuous-wave terahertz imaging by a pyroelectric camera[J]. *Chin. Opt. Lett.*, 2008, 6(1): 29~31
- 4 R. W. McGowan, G. Gallot, D. Grischkowsky. Propagation of ultrawide band short pulses of terahertz radiation through

submillimeter-diameter circular waveguides [J]. Opt. Lett., 1999, **24**(20): 1431~1433

- 5 G. Gallot, S. P. Jamison, D. Grischkowsky *et al.*. Terahertz waveguides[J]. *J. Opt. Soc. Am. B*, 2000, **17**(5): 851~863
- 6 T. Hidaka, H. Minamide, S. Ichikawa *et al.*, Ferroelectric PVDF cladding terahertz waveguide[J]. *J. Lightwave Technol.*, 2005, **23**(8); 2469~2473
- 7 J. A. Harrington, R. George, E. Mueller *et al.*. Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation[J]. Opt. Exp., 2004, **12**(21): 5263~5268
- 8 T. Ito, Y. Matsuura, H. Ito *et al.*. Flexible terahertz fiber optics with low bend-induced losses[J]. J. Opt. Soc. Am. B, 2007, 24(5): 1230~1235
- 9 B. Bowden, J. A. Harrington, O. Mitrofanov. Silver/ polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation [J]. Opt. Lett., 2007, 32 (20): 2945 ~ 2947
- 10 M. Miyagi, S. Kawakami. Design theory of dielectric coated circular metallic waveguides for infrared Transmission [J]. J. Lightwave Technol., 1984, LT-2(2): 116~126
- 11 R. K. Nubling, J. A. Harrington. Launch conditions and mode coupling in hollow-glass waveguides [J]. Opt. Eng., 1998, 37 (9): 2454~2458
- 12 M. A. Ordal, R. J. Bell, M. R. Querry *et al.*. Optical properties of Au, Ni, and Pb at submillimeter wavelengths[J]. *Appl. Opt.*, 1987, **26**(4): 774~752
- 13 M. A. Ordal, R. J. Bell, M. R. Querry *et al.*. Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths[J]. *Appl. Opt.*, 1988, 27(6): 1203~1209